
pubs.acs.org/IC Published on Web 10/08/2010 r 2010 American Chemical Society

9978 Inorg. Chem. 2010, 49, 9978–9984

DOI: 10.1021/ic101398g

Volume-Based Thermoelasticity: Consequences of the (Near) Proportionality of

Isothermal Compressibility to Formula-Unit Volume

H. Donald Brooke Jenkins,*,† Leslie Glasser,‡ and Joe Lee§

†Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom,
‡Nanochemistry Research Institute, Department of Chemistry, Curtin University of Technology, Perth,
Western Australia, and §School of Chemical Engineering and Analytical Science, University of Manchester,
Manchester, M13 9PL, United Kingdom

Received July 13, 2010

Groups of structurally related materials, including the alkali halides, exhibit a proportionality of isothermal
compressibility to formula-unit volume. The relationship has recently been explored by Glasser and by Recio et al.
In this paper, we present the consequences of such proportionality on the relationships of Born-Land�e and
Born-Mayer parameters to the formula-unit volume. These relationships have then been tested separately on
(i) alkali (excluding cesium) halides and (ii) cesium halides. We conclude that the equations fit the NaCl-type materials
satisfactorily, but less well for the CsCl-type materials, and that the Born-Mayer equation is more applicable. These
results confirm the conclusion that volume is intimately linked to thermodynamic quantities, as already demonstrated
by our development of volume-based thermodynamics (VBT).

1. Introduction

The role of formula-unit volume, Vu, in providing a series
of simple correlations between molar thermodynamic quan-
tities for condensed-phase materials, mainly, although not
exclusively, for ionic salts and minerals, continues to expand.
[In previous publications, formula-unit volume has been
symbolized Vm. However, it is now internationally agreed
that sub-m represents a molar quantity, in this case, molar
volume Vm = volume/amount of substance. Vu and Vm are
simply related by Vu = Vm/L, where L is the Avogadro
constant.] In previous publications, we have reported, follow-
ing Mallouk and co-workers,1,2 general correlations3-8 be-
tween the following:

(a) Standard molar entropy, Sm
o, and formula-unit

volume, Vu, in the form3-5

Sm� � a1Vu þ b1 ð1Þ

where a1 and b1 are constants. For this relation-
ship and similar ones below, standard molar
thermodynamic quantities (with a superscript �)
appertain to a standard pressure of 100 kPa and a
temperature of 298 K; formula unit volume has
been measured under ambient conditions.

(b) Lattice potential energy, UPOT, and Vu in the
form6-8

UPOT � 2Iða2Vu
- 1=3 þ b2Þ ð2Þ

where a2 and b2 are constants and I, the lattice ionic
strength factor is equal to 1/2

P
inizi

2 in which ni is
the number of ions of charge number zi in the
formula unit. Volume-based thermodynamics
(VBT) have also been explored for sequences of
transitionmetal oxides9where it was reported that,
for compounds TixOy (for a range of values 1<x
< 20 with compatible values of y), VxOy (for a
range of values 1<x < 7 with compatible values
of y), MoxOy (for a range of values 1<x<9 with
compatible values of y), and PrxOy (for a range of
values 1 < x < 12 with compatible values of y),
correlations can be found in the forms

standard enthalpy of formation,

ΔfH� � a3Vu þ b3 ð3Þ

Sm
o � a4Vu þ b4 ð4Þ
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standard Gibbs energy of formation,

ΔfG� � a5Vu þ b5 ð5Þ

where a3, b3, a4, b4, a5, and b5 are constants and
squares of correlation coefficients r2 are usually
greater than 0.999. Most recently,10,11 isothermal
compressibility, β (measured under ambient con-
ditions), and formula-unit volume within groups
of materials have been related in the linear form

β ¼ k 0ð2Vu=NÞþ c0 � k 0Vpr þ c0 ð6Þ
where k0 and c0 are constants for a related set of
compounds and N is the number of atoms in the
formula unit. In some compound sets, c0 is close to,
and not statistically significant from, zero; in such
cases, linear relation becomes proportionality. For
the alkali halides, N= 2, and thus Vpr = Vu. The
introductionofVpr (defined as 2Vu/N) byAnderson
and Nafe12 effects a so-called “normalization to
binary”. This enables, in the wider application of
our work beyond alkali halides, formula units
having different values of N to be treated within
the same broad linear relationship.

Such correlations are extremely useful since they provide
information concerning thermodynamic and thermoelastic
properties which are independent of detailed structural in-
formation. This is philosophically related to the fact that even
if our current theories concerning microscopic properties of
atoms and molecules proved to need revision, this would not
affect the macroscopic properties which are the subject of
thermodynamics.13

Vu is directly derivable from X-ray diffraction informa-
tion, since

Vu ¼ Vcell=Z ¼ abcð1- cos2 R- cos2 γ- cos2 ε

þ 2cos Rcos γcos εÞ1=2=Z ð7Þ
where Vcell is the unit cell volume of the crystal; Z is the
number of formula units foundwithin the unit cell; a, b, and c
are the cell constants; and R, γ, and ε are the unit cell angles.
In a study of the 16 alkali halides possessing the NaCl

structure (i.e., LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI,
KF,KCl,KBr, KI, RbF,RbCl, RbBr, andRbI), Glasser has
noted9

β=GPa- 1 ¼ 0:908 ðVu=nm
3Þ ð8Þ

with r2 = 0.989, while for the Cs halides, which possess the
CsCl structure

β=GPa- 1 ¼ 0:807 ðVu=nm
3Þ ð9Þ

with r2 = 0.968. Significantly, these correlations are seen to
pass through the origin.

In the case of the dihalides,MX2 (M=Ba, Ce, Cd, Eu, Sr,
Pb paired with X = F and M = Sr, X = Cl)

β=GPa- 1 ¼ 0:576 ðVpr=nm
3Þ- 0:005

¼ 0:384 ðVu=nm
3Þ- 0:005 ð10Þ

with r2 = 0.981 and again passing close to the origin. The
overall least-squares fit formaterials other than alkali halides
took the form (with r2 = 0.914)

β=GPa- 1 ¼ 0:317 ðVpr=nm
3Þ ð11Þ

and for close-packed oxides

β=GPa- 1 ¼ 0:108 ðVpr=nm
3Þþ 0:003 ð12Þ

Such a pattern of linear behavior has been explored by
Recio et al.,14-18 whose approach partitions the unit cell
volume of crystalline solids into separate volume regions by
analysis of the topology of the electron density contours and
the electron localization functions (ELF). These separate
volumes correspond essentially to either the ion constituents
or to their valence electron shells, and each is found to
contribute additively to the bulk compressibility. It emerges
that the larger the volume of a component, the greater is its
compressibility. The bulk compressibility, β, is simply the
sum of the individual ion contributions, and so an ion with a
larger volume will contribute to a greater extent to the
compressibility, independently of the compressibilities of
the remaining atoms.18

Oxide ions, in materials such as spinels, were found, by
Recio et al., to be much more voluminous (and thus more
compressible) than the accompanying, more rigid, cations.
Thus, the summed (bulk) compressibility, β, is dominated
by that of the oxide ions;resulting in very similar com-
pressibilities (and, indeed, molar volumes, Vm) for the
oxide spinels. By contrast, volume in the alkali halides is
shared more equally between cations and anions, resulting
in compressibilities (and molar volumes) which depend
on the particular combination of cation and anion (i.e.,
on the chemical composition), with β increasing as Vm

increases.
The present approach begins with fundamental equations

of physics and then derives, as a consequence of the observed
(near) proportionalities given above, testable relations be-
tween Born-Land�e/Born-Mayer parameters and formula-
unit volumes. Experimental validity or otherwise of these
derived relationships then establishes the applicability or
otherwise of Born-Land�e/Born-Mayer equations to partic-
ular sets of crystalline solids.
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2. Relationship for a Crystalline Solid between Isothermal
Compressibility and Closest Ion Separation

Isothermal compressibility, β (a weak function of tempera-
ture and pressure), is defined by the equation

β ¼ -
1

V

DV
Dp

� �
T, n

¼ -
1

Vm

DVm

Dp

� �
T

ð13Þ

whereT=thermodynamic temperature,V=volume,Vm=
molar volume (volume/chemical amount, n), and p = pres-
sure. The corresponding bulk modulus, K, the reciprocal of
isothermal compressibility, is then defined by the equation

K ¼ 1

β
¼ -Vm

Dp
DVm

� �
T

ð14Þ

but at T = 0 K

p ¼ -
DA
DV

� �
T, n

¼ -
DAm

DVm

� �
T

¼ -
DUm

DVm

� �
T

þT
DSm

DVm

� �
T

¼ -
DUm

DVm

� �
T

ð15Þ

whereA=Helmholtz energy,Am=molarHelmholtz energy,
Um=molar internal energy, andSm=molar entropy, so that

K ¼ Vm
D2Um

DVm
2

 !
T

ð16Þ

For a crystalline solid, MX, such as an alkali halide

Vmð¼ LVuÞ ¼ CLr3 ð17Þ
whereC=2forNaCl structures and 8/33/2 (=1.540) forCsCl
structures, L = Avogadro constant, and r = closest ion
separation. Now

DUm

DVm

� �
T

¼ DUm

Dr

� �
T

Dr
DVm

� �
T

ð18Þ

and

D2Um

DVm
2

 !
T

¼ DUm

Dr

� �
T

D2r
DVm

2

 !
T

þ D2Um

DVmDr

 !
T

Dr
DVm

� �
T

ð19Þ

Furthermore

DUm

Dr

� �
T

¼ 0 ð20Þ

for a crystal in its equilibrium state (at 0 K), so for this
situation

D2Um

DVm
2

 !
T

¼ D2Um

DVmDr

 !
T

Dr
DVm

� �
T

¼ D2Um

DVmDr

 !
T

DVm

Dr

� �
T

Dr
DVm

� �
T

Dr
DVm

� �
T

¼ D2Um

Dr2

 !
T

Dr
DVm

� �2

T

¼ D2Um

Dr2

 !
T

1

9C2L2r4
ð21Þ

and therefore

K ¼ 1

β
¼ CLr3

D2Um

Dr2

 !
T

1

9C2L2r4
¼ D2Um

Dr2

 !
T

1

9CLr
ð22Þ

3. Application to Alkali Halide Crystals Satisfying Born-
Land�e and Born-Mayer Equations

The above equations will now be considered in relation to
the Born-Land�e andBorn-Mayer equations for 1:1 crystal-
line MþX- solids (specifically alkali halides). We shall
assume that eq 22 above applies at ambient temperatures
and not exclusively at 0 K (but see Appendix 1).

(a). Born-Land�e Equation.The Born-Land�e equation
for singly charged ionic crystals takes the form

Um ¼ -
LMe2

4πε0r
þ B

rn
ð23Þ

where M = Madelung constant, e = elementary charge,
ε0 = permittivity of free space, B = repulsion parameter,
and n = Born exponent. [The charge number product
|zþz-| has been omitted from the numerator of the first
quotient because this product is equal to 1 for MþX-

crystals. However, if the equations in this paper are adapted
to crystals where |zþz-| is greater than 1, e2 should be
replaced by |zþz-|e

2.] The equation strictly applies to
potential energy only, and we therefore assume here that
kinetic energy associated with zero-point vibration can
be ignored in comparison, more particularly in connection
with the following manipulations. Differentiation with
respect to r, the anion-cation lattice separation, leads
us to

DUm

Dr

� �
T

¼ LMe2r- 2

4πε0
- nBr- n- 1 ð24Þ

This derivative is zero at the equilibrium value of r, viz, r0.
(Strictly this also requires zero external pressure, but ambi-
ent pressure, under which compressibility is measured, is
assumed to be a good approximation.) Setting the right-
hand side of eq 24 to zero, we have

B ¼ LMe2r0
n- 1

4πε0n
ð25Þ

Substituting B back into eq 24 gives

DUm

Dr

� �
T

¼ LMe2

4πε0
ðr- 2 - r0

n- 1r- n- 1Þ ð26Þ

Further differentiation leads to

D2Um

Dr2

 !
T

¼ LMe2

4πε0
½- 2r- 3 þðnþ 1Þr0n- 1r- n- 2�

¼ LMe2

4πε0
½- 2r0

- 3 þðnþ 1Þr0- 3�

at r ¼ r0

¼ ðn- 1ÞLMe2

4πε0
r0

- 3 ð27Þ
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Hence, via eq 22

K ¼ 1

β
¼ 1

9CLr0

D2Um

Dr2

 !
T, r¼ r0

¼ ðn- 1ÞMe2

36πε0C
r0

- 4 ð28Þ

From eq 17

Vm0ð¼ LVuÞ ¼ CLr0
3 ð29Þ

where sub-0 indicates a minimum energy value (implied
for the formula-unit volume Vu)

r0
- 4 ¼ C4=3Vu

- 4=3 ð30Þ
Combining eqs 28 and 30

K ¼ 1

β
¼ ðn- 1ÞMe2C1=3

36πεo
Vu

- 4=3 ð31Þ

and therefore

β ¼ 36πε0
e2

1

MC1=3

Vu
4=3

n- 1
ð32Þ

Rearrangement of either eq 31 or eq 32 gives

n- 1 ¼ 36πε0
e2

1

MC1=3

Vu
4=3

β
ð33Þ

from which, using experimental values of β, n may be
calculated; these values are given as n(calc) in Table 1.
It should be noted that there also exists, for the
alkali halides, integral or half-integral “semi-theoretical”

values of n;19 these values are given as n(st) in Table 1.
The relationship between n(st) and n(calc) is shown in
Figure 1.
For a set of crystalline solids MþX- with the same

values ofM andC such as the Li,Na,K,Rb halides (M=
1.74756,C1/3=

ffiffiffi
23

p
=1.25992);the NaCl series;or the

Cs halides (M= 1.76267, C1/3 = 2/
√
3 = 1.15470);the

CsCl series;the composite of an experimental propor-
tionality of β toVu and conformity of the particular set of
solids to the Born-Land�e equation would require, by
eq 33, n- 1 to be directly proportional toVu

1/3. [Provided
that the proportionality constants of β to Vu are the
same;not the case for the two sets of alkali halides;
one could combine solids with different M and C values

Table 1. Composite Table of Original Formula-Unit Volume and Compressibility Values10 for Alkali Halides Together with Various Born-Land�e and Born-Mayer
Parameters

MX Vu/nm
3a β/GPa-1 n(st)19 n(calc) Vu

1/3/nm F/nm Vu
1/3/F X/nm4b

LiF 0.0163 0.0147 6 5.981 0.2535 0.0288 8.796 0.6585
LiCl 0.0337 0.0322 7 6.989 0.3230 0.0321 10.066 1.4425
LiBr 0.0416 0.0389 7.5 7.565 0.3465 0.0321 10.791 1.7426
LiI 0.0543 0.0522 8.5 7.979 0.3787 0.0335 11.313 2.3384
NaF 0.0247 0.0206 7 7.187 0.2912 0.0282 10.315 0.9228
NaCl 0.0449 0.0402 8 8.034 0.3554 0.0312 11.382 1.8009
NaBr 0.0533 0.0490 8.5 8.253 0.3763 0.0323 11.658 2.1951
NaI 0.0679 0.0622 9.5 8.891 0.4080 0.0327 12.461 2.7864
KF 0.0382 0.0316 8 8.213 0.3368 0.0290 11.608 1.4156
KCl 0.0623 0.0522 9 8.927 0.3964 0.0317 12.507 2.4728
KBr 0.0718 0.0659 9.5 9.023 0.4156 0.0329 12.628 2.9522
KI 0.0882 0.0833 10.5 9.351 0.4451 0.0341 13.041 3.7516
RbF 0.0446 0.0357 8.5 8.850 0.3546 0.0286 12.410 1.5993
RbCl 0.0715 0.0612 9.5 9.591 0.4151 0.0311 13.344 2.7416
RbBr 0.0840 0.0730 10 9.506 0.4327 0.0327 13.237 3.2702
RbI 0.0989 0.0909 11 9.915 0.4625 0.0336 13.752 4.0721
CsF 0.0542 0.0400 9.5 10.828 0.3784 0.0277 13.658 1.8074
CsCl 0.0702 0.0549 10.5 11.110 0.4125 0.0295 13.983 2.4806
CsBr 0.0788 0.0632 11 11.245 0.4287 0.0303 14.140 2.8557
CsI 0.0953 0.0796 12 11.481 0.4568 0.0317 14.412 3.5967

aThis is symbolized asVm in previous papers by these authors. In this paper,Vm is reserved, in accordancewith international (IUPAC) convention, for
molar volume. b X = 1000(-2C1/3Vu

-4/3 þ Vu
-1/F)-1.

Figure 1. Relation between n(calc) and n(st) for NaCl-type structures
(b) and CsCl-type structures (2).

(19) Dasent, W. E. Inorganic Energetics, 2nd ed.; Cambridge University
Press: New York, 1982.
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by testing the proportionality of MC1/3(n - 1) to Vu
1/3.]

Least squares plots of n- 1 againstVu
1/3 are presented in

Figures 2 and 3 for (i) both the NaCl and CsCl series and
(ii) both “semi-theoretical” and calculated [by eq 33]
values of n. For all four combinations, significant correla-
tion is exhibited (as indicated both by correlation coeffi-
cients and by 95% confidence intervals on the slopes).
However (as indicated by 95% confidence intervals on the

intercepts), only the n plots for the NaCl series pass
significantly through, or very close to, the origin, thereby
corresponding to, or very near, proportionality. For both
CsCl series plots, the intercepts deviate substantially from
zero. This suggests that the Born-Land�e equation is a
good approximation for the whole of the NaCl series but
not so for the CsCl series.

Born-Mayer Equation.TheBorn-Mayer equation for
singly charged ionic crystals takes the form

Um ¼ -
LMe2

4πε0r
þD exp -

r

F

� �
ð34Þ

where D and F are new constants. [The charge number
product |zþz-| has been omitted from the numerator of the
first quotient because this product is equal to 1 for MþX-

crystals. However, if the equations in this paper are
adapted to crystalswhere |zþz-| is greater than1, e

2 should
be replaced by |zþz-|e

2.] Again, this equation omits the
kinetic energy of zero-point vibration. An interesting
further point is that, unlike the B factor in the
Born-Land�e equation, the D factor in this (unextended)
formof the Born-Mayer equation only includes repulsion
from nearest neighbor cation-anion pairs.

DUm

Dr

� �
T

¼ LMe2r- 2

4πε0
-
D

F
exp -

r

F

� �
ð35Þ

The above derivative is equal to zero at the equilibrium
value of r, r0, so that

D ¼ LMe2r0
- 2

4πε0
F exp

r0

F

� �
ð36Þ

and back-substitution of D into eq 35 leads to

DUm

Dr

� �
T

¼ LMe2

4πε0
r- 2 - r0

- 2 exp
r0 - r

F

� �� �
ð37Þ

Differentiating further, we have

D2Um

DVu
2

 !
T

¼ LMe2

4πε0
- 2r- 3 þ r0

- 2

F
exp

r0 - r

F

� �" #
ð38Þ

where at r = r0

D2Um

DVu
2

 !
T

¼ LMe2

4πε0
- 2r0

- 3 þ r0
- 2

F

" #
ð39Þ

and hence

K ¼ 1

β
¼ 1

9CLr0

D2Um

DVu
2

 !
T,Vu ¼Vu0

¼ Me2

36πε0C
- 2r0

- 4 þ r0
- 3

F

 !

¼ Me2

36πε0
- 2C1=3Vu

- 4=3 þVu
- 1

F

 !
ð40Þ

Figure 2. Plotofn(st)- 1versusVu
1/3. (b)NaCl series: Pearson r2=0.963

for14degreesof freedom.Least squares fitted line isn(st)- 1=-1.2((1.0)þ
23.5((2.6)Vu

1/3/nm. Figures in parentheses are estimated 95% deviations.
(2) CsCl series: Pearson r2= 0.996 for 2 degrees of freedom. Least squares
fitted line is n(st) - 1=-3.6((2.2) þ 31.7((5.2)Vu

1/3/nm. Figures in
parentheses are estimated 95% deviations.

Figure 3. Plot of n(calc) - 1 versus Vu
1/3. (b) NaCl series: Pearson r2 =

0.883 for 14 degrees of freedom. Least squares fitted line is n(calc) - 1 =
0.7((1.4) þ 17.8((3.7)Vu

1/3/nm. Figures in parentheses are estimated 95%
deviations. (2) CsCl series: Pearson r2=0.996 for 2 degrees of freedom.Least
squares fitted line is n(calc) - 1 = 6.676((0.045) þ 8.33((0.11)Vu

1/3/nm.
Figures in parentheses are estimated 95% deviations.
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or

β ¼ 36πε0
Me2

- 2C1=3Vu
- 4=3 þVu

- 1

F

 !- 1

ð41Þ

Rearrangement of either eq 40 or eq 41 gives

F ¼ 36πε0Vu

Me2β
þ 2C1=3Vu

- 1=3

� �- 1

ð42Þ

fromwhich Fmaybe calculated; these values are given as in
Table 1.
From eq 41, it would appear that, for β to be approxi-

mately proportional to Vu, we would require that

Vu
- 1=F.2C1=3Vu

- 4=3 ð43Þ
or that

Vu
1=3=F.2C1=3 ð44Þ

where 2C1/3=2.52 forNaCl structure halides and 4/(3)1/2=
2.31 for CsCl structure halides (CsF, CsCl, CsBr, and CsI).
As shown in Table 1, the values of Vu

1/3/F vary from 8
to 14 for the NaCl series and between 13 and 15 for the
CsCl series. At first sight, and in neither case, do these
values appear sufficiently large to convince anyone that
the Born-Mayer equation predicts proportionality of β
to Vu. However, plots of 1000(-2C1/3Vu

-4/3þ Vu
-1/F)-1

[tabulated as X in Table 1; the 1000 multiplier is merely a
convenient scaling factor] against Vu for both NaCl and
CsCl series in Figure 4 are very close to linearity, but only
for the NaCl series can the plot be permitted to pass with
reasonable statistical confidence through the origin. To-
gether with the experimental proportionality between β
and Vu as found by Glasser,10 this reasonably supports
the applicability of the Born-Mayer equation to the
NaCl series but not so for the CsCl series.

There are many other types of 1:1 species, and in order
to study these by the methods discussed for the alkali
halides, we would need to specify theMadelung constant,
M, in eqs 23 and 34 for the new structure as well as define
the value ofC, determined by internal geometry, in eq 17.

4. Conclusion

A comparison of Figures 3 and 4 shows that the
Born-Mayer equation fits the NaCl-structured materials
rather better than the Born-Land�e equation. This is not
unexpected since the exponential repulsion term in the
Born-Mayer equation is believed to better represent the
repulsion than the power-law term in the Born-Land�e
equation.
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Appendix 1

Considering the equations derived in section 2 of this paper
and the avoidance of the precise requirement that T = 0 K.

K ¼ Vm
D2Am

DVm
2

 !
T

ðA1Þ

Now

Am ¼ Um -TSm ðA2Þ
so that

DAm

DVm

� �
T

¼ DUm

DVm

� �
T

-T
DSm

DVm

� �
T

ðA3Þ

and

D2Am

DVm
2

 !
T

¼ D2Um

DVm
2

 !
T

-T
D2Sm

DVm
2

 !
T

ðA4Þ

One of the Maxwell relationships states

DSm

DVm

� �
T

¼ Dp
DT

� �
Vm

ðA5Þ

so that

D2Sm

DVm
2

 !
T

¼ D
DVm
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� �
Vm

 !
T

¼ D
DT
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DVm

� �
T

 !
Vm

¼ -
D
DT
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� �
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ðA6Þ

Figure 4. Plot of X = 1000[-2C1/3Vu
-4/3 þ (VuF)-1]-1 versus Vu. (b)

NaCl series: Pearson r2 = 0.988 for 14 degrees of freedom. Least squares
fitted line is 1000[-2C1/3Vu

-4/3 þ (VuF)-1]-1/nm4 = -0.06((0.16) þ
41.5((2.6)Vu/nm. Figures in parentheses are estimated 95% deviations.
(2) CsCl series: Pearson r2= 1.000 for 2 degrees of freedom. Least squares
fitted line is 1000[-2C1/3Vu

-4/3 þ (VuF)-1] -1/nm4=-0.56((0.18) þ
43.6((2.4)Vu/nm. Figures in parentheses are estimated 95% deviations.
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Combining eqs A1, A4, and A6

K ¼ Vm
D2Um

DVm
2

 !
T

þT
DK
DT

� �
Vm

ðA7Þ

or

K -T
DK
DT

� �
Vm

¼ Vm
D2Um

DVm
2

 !
T

ðA8Þ

This requires knowledge not only ofK but also of its tempera-
ture derivative. If K can be treated as being independent of T

K ¼ Vm
D2Um

DVm
2

 !
T

ðA9Þ

whichwas our original starting point at eq 16 (strictly true only
for T= 0 K).
Interestingly, an experimental study of the high-tempera-

ture (300-700 K) elasticity of sodium chloride20 shows that
the temperature dependence of bulk modulus (K) at a
constant molar volume Vm (equal to the ambient value) is
essentially zero over the whole temperature range covered.
This gives strong support to approximating eq A8 by eq A9,
i.e., by eq 16. Further support for neglecting temperature
dependence of the constant-volume bulk modulus has been
given by Thakur and Dwary21 and by Recio et al.22

(20) Yamamoto, S.; Ohno, I.; Anderson, O. L. J. Phys. Chem. Solids 1987,
48, 143–151.

(21) Thakur, K. P.; Dwary, B. D. J. Phys. C 1986, 19, 3069–
3081.

(22) Recio, J. M.; Pend�as, A. M.; Francisco, E.; Fl�orez, M.; Lua~na, V.
Phys. Rev. B 1993, 48, 5891–5901.


